820 research outputs found

    Tools or crutches? Apparatus as a sense-making aid in mathematics teaching with children with moderate learning difficulties

    Get PDF
    This paper challenges a view of concrete materials as abstracts used within a rigid instructional sequence that particular children are perceived to require or not, as the case may be. Focussing on mathematics teaching, it contends that it is more useful to consider the function of these materials as tools, artefacts used flexibly and selectively by pupils to make sense of mathematics, rather than as crutches, devices which may support procedural competency in mathematics but with no guarantees of understanding

    High-Resolution Simulations of Cosmic Microwave Background non-Gaussian Maps in Spherical Coordinates

    Full text link
    We describe a new numerical algorithm to obtain high-resolution simulated maps of the Cosmic Microwave Background (CMB), for a broad class of non-Gaussian models. The kind of non-Gaussianity we account for is based on the simple idea that the primordial gravitational potential is obtained by a non-linear but local mapping from an underlying Gaussian random field, as resulting from a variety of inflationary models. Our technique, which is based on a direct realization of the potential in spherical coordinates and fully accounts for the radiation transfer function, allows to simulate non-Gaussian CMB maps down to the Planck resolution (ℓmax∌3,000\ell_{\rm max} \sim 3,000), with reasonable memory storage and computational time.Comment: 9 pages, 5 figures. Submitted to ApJ. A version with higher quality figures is available at http://www.pd.infn.it/~liguori/content.htm

    'I like it instead of maths' : how pupils with moderate learning difficulties in Scottish primary special schools intuitively solved mathematical word problems

    Get PDF
    This study shows how a group of 24 children in three Scottish primary schools for pupils with moderate learning difficulties responded to word problems following their teachers' introduction to the principles of Cognitively Guided Instruction (CGI). CGI is a professional development programme in mathematics instruction based on constructivist principles developed at the University of Wisconsin-Madison. The study found that the sample group of pupils were able to develop their understanding of mathematical concepts through actively engaging in word problems without prior explicit instruction and with minimal teacher adjustments. The pupils' conceptual understandings demonstrated by their solution strategies within CGI activities were generally not consistent with classroom records of assessment. The results were encouraging in illustrating the capacity of the sample group of pupils with moderate learning difficulties to reveal their mathematical thinking and considers the importance of this insight for instructional decision making

    Constraining Primordial Magnetic Fields with Future Cosmic Shear Surveys

    Full text link
    The origin of astrophysical magnetic fields observed in galaxies and clusters of galaxies is still unclear. One possibility is that primordial magnetic fields generated in the early Universe provide seeds that grow through compression and turbulence during structure formation. A cosmological magnetic field present prior to recombination would produce substantial matter clustering at intermediate/small scales, on top of the standard inflationary power spectrum. In this work we study the effect of this alteration on one particular cosmological observable, cosmic shear. We adopt the semi-analytic halo model in order to describe the non-linear clustering of matter, and feed it with the altered mass variance induced by primordial magnetic fields. We find that the convergence power spectrum is, as expected, substantially enhanced at intermediate/small angular scales, with the exact amplitude of the enhancement depending on the magnitude and power-law index of the magnetic field power spectrum. We use the predicted statistical errors for a future wide-field cosmic shear survey, on the model of the ESA Cosmic Vision mission \emph{Euclid}, in order to forecast constraints on the amplitude of primordial magnetic fields as a function of the spectral index. We find that the amplitude will be constrained at the level of ∌0.1\sim 0.1 nG for nB∌−3n_B\sim -3, and at the level of ∌10−7\sim 10^{-7} nG for nB∌3n_B\sim 3. The latter is at the same level of lower bounds coming from the secondary emission of gamma-ray sources, implying that for high spectral indices \emph{Euclid} will certainly be able to detect primordial magnetic fields, if they exist. The present study shows how large-scale structure surveys can be used for both understanding the origins of astrophysical magnetic fields and shedding new light on the physics of the pre-recombination Universe. (abridged)Comment: 24 pages, 9 figures. To appear on JCA

    X-ray and Sunyaev-Zel'dovich scaling relations in galaxy clusters

    Full text link
    [Abridged] We present an analysis of the scaling relations between X-ray properties and Sunyaev-Zel'dovich (SZ) parameters for a sample of 24 X-ray luminous galaxy clusters observed with Chandra and with measured SZ effect. These objects are in the redshift range 0.14--0.82 and have X-ray bolometric luminosity L>10^45 erg/s. We perform a spatially resolved spectral analysis and recover the density, temperature and pressure profiles of the ICM, just relying on the spherical symmetry of the cluster and the hydrostatic equilibrium hypothesis. We observe that the correlations among X-ray quantities only are in agreement with previous results obtained for samples of high-z X-ray luminous galaxy clusters. On the relations involving SZ quantities, we obtain that they correlate with the gas temperature with a logarithmic slope significantly larger than the predicted value from the self-similar model. The measured scatter indicates, however, that the central Compton parameter y_0 is a proxy of the gas temperature at the same level of other X-ray quantities like luminosity. Our results on the X-ray and SZ scaling relations show a tension between the quantities more related to the global energy of the system (e.g. gas temperature, gravitating mass) and the indicators of the structure of the ICM (e.g. gas density profile, central Compton parameter y_0), showing the most significant deviations from the values of the slope predicted from the self-similar model in the L-T, L-M_{tot}, M_{gas}-T, y_0-T relations. When the slope is fixed to the self-similar value, these relations consistently show a negative evolution suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model.Comment: MNRAS in press - Minor revision to match published versio

    Primordial density perturbations with running spectral index: impact on non-linear cosmic structures

    Full text link
    (abridged) We explore the statistical properties of non-linear cosmic structures in a flat Λ\LambdaCDM cosmology in which the index of the primordial power spectrum for scalar perturbations is allowed to depend on the scale. Within the inflationary paradigm, the running of the scalar spectral index can be related to the properties of the inflaton potential, and it is hence of critical importance to test it with all kinds of observations, which cover the linear and non-linear regime of gravitational instability. We focus on the amount of running αS,0\alpha_{\mathrm{S},0} allowed by an updated combination of CMB anisotropy data and the 2dF Galaxy Redshift Survey. Our analysis constrains αS,0=−0.051−0.053+0.047\alpha_{\mathrm{S},0} = -0.051^{+0.047}_{-0.053} (−0.034−0.040+0.039)(-0.034^{+0.039}_{-0.040}) at 95% Confidence Level when (not) taking into account primordial gravitational waves in a ratio as predicted by canonical single field inflation, in agreement with other works. For the cosmological models best fitting the data both with and without running we studied the abundance of galaxy clusters and of rare objects, the halo bias, the concentration of dark matter halos, the Baryon Acoustic Oscillation, the power spectrum of cosmic shear, and the Integrated Sachs-Wolfe effect. We find that counting galaxy clusters in future X-ray and Sunyaev-Zel'dovich surveys could discriminate between the two models, more so if broad redshift information about the cluster samples will be available. Likewise, measurements of the power spectrum of cosmological weak lensing as performed by planned all-sky optical surveys such as EUCLID could detect a running of the primordial spectral index, provided the uncertainties about the source redshift distribution and the underlying matter power spectrum are well under control.Comment: 17 pages, 14 figures, 4 tables. Accepted for publication on MNRA

    Imprints of primordial non-Gaussianity on the number counts of cosmic shear peaks

    Full text link
    We studied the effect of primordial non-Gaussianity with varied bispectrum shapes on the number counts of signal-to-noise peaks in wide field cosmic shear maps. The two cosmological contributions to this particular weak lensing statistic, namely the chance projection of Large Scale Structure and the occurrence of real, cluster-sized dark matter halos, have been modeled semi-analytically, thus allowing to easily introduce the effect of non-Gaussian initial conditions. We performed a Fisher matrix analysis by taking into account the full covariance of the peak counts in order to forecast the joint constraints on the level of primordial non-Gaussianity and the amplitude of the matter power spectrum that are expected by future wide field imaging surveys. We find that positive-skewed non-Gaussianity increases the number counts of cosmic shear peaks, more so at high signal-to-noise values, where the signal is mostly dominated by massive clusters as expected. The increment is at the level of ~1 for f_NL=10 and ~10 for f_NL=100 for a local shape of the primordial bispectrum, while different bispectrum shapes give generically a smaller effect. For a future survey on the model of the proposed ESA space mission Euclid and by avoiding the strong assumption of being capable to distinguish the weak lensing signal of galaxy clusters from chance projection of Large Scale Structures we forecasted a 1-sigma error on the level of non-Gaussianity of ~30-40 for the local and equilateral models, and of ~100-200 for the less explored enfolded and orthogonal bispectrum shapes.Comment: 13 pages, 8 figures, 1 table. Submitted to MNRA

    Inclusion and education in the United Kingdom

    Get PDF
    Paper describes inclusion and education in the United Kingdom

    'Letting the children lead: The Jeely Nursery' - A second interim report for the Robertson Trust

    Get PDF
    This is the second interim report undertaken for the Robertson Trust of an ongoing project developed by the Jeely Nursery (JN) in Castlemilk, Glasgow, from 2007-10

    Constraints on extended quintessence from high-redshift Supernovae

    Get PDF
    We obtain constraints on quintessence models from magnitude-redshift measurements of 176 type Ia Supernovae. The considered quintessence models are ordinary quintessence, with Ratra-Peebles and SUGRA potentials, and extended quintessence with a Ratra-Peebles potential. We compute confidence regions in the Ωm0−α\Omega_{m0}-\alpha plane and find that for SUGRA potentials it is not possible to obtain useful constraints on these parameters; for the Ratra-Peebles case, both for the extended and ordinary quintessence we find \alpha\mincir 0.8, at the 1σ1\sigma level. We also consider simulated dataset for the SNAP satellite for the same models: again, for a SUGRA potential it will not be possible to obtain constraints on α\alpha, while with a Ratra-Peebles potential its value will be determined with an error \mincir 0.6. We evaluate the inaccuracy made by approximating the time evolution of the equation of state with a linear or constant w\diz, instead of using its exact redshift evolution. Finally we discuss the effects of different systematic errors in the determination of quintessence parameters.Comment: 8 pages, ApJ in press. We added a discussion of the systematic errors and we updated the SNe catalogu
    • 

    corecore